Somatic ATP release from guinea pig sympathetic neurons does not require calcium-induced calcium release from internal stores.
نویسندگان
چکیده
Prior studies indicated that a Ca(2+)-dependent release of ATP can be initiated from the soma of sympathetic neurons dissociated from guinea pig stellate ganglia. Previous studies also indicated that Ca(2+)-induced Ca(2+) release (CICR) can modulate membrane excitability in these same neurons. As Ca(2+) release from internal stores is thought to support somatodendritic transmitter release in other neurons, the present study investigated whether CICR is essential for somatic ATP release from dissociated sympathetic neurons. Caffeine increased intracellular Ca(2+) and activated two inward currents: a slow inward current (SIC) in 85% of cells, and multiple faster inward currents [asynchronous transient inward currents (ASTICs)] in 40% of cells voltage-clamped to negative potentials. Caffeine evoked both currents when cells were bathed in a Ca(2+)-deficient solution, indicating that both were initiated by Ca(2+) release from ryanodine-sensitive stores in the endoplasmic reticulum. Sodium influx contributed to generation of both SICs and ASTICs, but only ASTICs were inhibited by the presence of the P2X receptor blocker PPADs. Thus ASTICs, but not SICs, resulted from an ATP activation of P2X receptors. Ionomycin induced ASTICs in a Ca(2+)-containing solution, but not when it was applied in a Ca(2+)-deficient solution, demonstrating the key requirement for external Ca(2+) in initiating ASTICs by ionomycin. Pretreatment with drugs to deplete the internal stores of Ca(2+) did not block the ability of ionomycin or long depolarizing voltage steps to initiate ASTICs. Although a caffeine-induced release of Ca(2+) from internal stores can elicit both SICs and ASTICs in dissociated sympathetic neurons, CICR is not required for the somatic release of ATP.
منابع مشابه
Ca2+ influx, but not Ca2+ release from internal stores, is required for the PACAP-induced increase in excitability in guinea pig intracardiac neurons.
Mechanisms modulating the pituitary adenylate cyclase activating polypeptide (PACAP)-induced increase in excitability have been studied using dissociated guinea pig intrinsic cardiac neurons and intact ganglion preparations. Measurements of intracellular calcium (Ca2+) with the fluorescent Ca2+ indicator dye fluo-3 indicated that neither PACAP nor vasoactive intestinal polypeptide (VIP) at eith...
متن کاملCalcium-induced calcium release regulates action potential generation in guinea-pig sympathetic neurones.
Experiments were done using guinea-pig sympathetic neurones dissociated from the stellate ganglia to establish whether calcium-induced calcium release (CICR) modulated action potential (AP) generation in mammalian neurones. Using measurements of intracellular calcium ([Ca(2+)](i)) with the Ca(2+)-sensitive dye fluo-3, we demonstrated that 10 mM caffeine activated ryanodine receptors and caused ...
متن کاملRyanodine inhibits the release of calcium from intracellular stores in guinea pig aortic smooth muscle.
We have examined the effects of ryanodine, an inhibitor of the release of sarcoplasmic reticulum calcium in cardiac muscle, on contractile tension and calcium-45 movement in aortic smooth muscle of guinea pigs to learn whether this agent also modifies the release of stored calcium in vascular smooth muscle. Ryanodine (3-100 microM) suppressed the phasic contractions induced by caffeine and nore...
متن کاملIonic mechanisms of histamine-induced responses in guinea pig intracardiac neurons.
Histamine, released from mast cells, can modulate the activity of intrinsic neurons in the guinea pig cardiac plexus. The present study examined the ionic mechanisms underlying the histamine-induced responses in these cells. Histamine evokes a small membrane depolarization and an increase in neuronal excitability. Using intracellular voltage recording from individual intracardiac neurons, we we...
متن کاملEnteric glia are targets of the sympathetic innervation of the myenteric plexus in the guinea pig distal colon.
Astrocytes respond to synaptic activity in the CNS. Astrocytic responses are synapse specific and precisely regulate synaptic activity. Glia in the peripheral nervous system also respond to neuronal activity, but it is unknown whether glial responses are synapse specific. We addressed this issue by examining the activation of enteric glia by distinct neuronal subpopulations in the enteric nervo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 299 4 شماره
صفحات -
تاریخ انتشار 2010